On new stability results for composite functional equations in quasi-β-normed spaces
نویسندگان
چکیده
منابع مشابه
Stability of the Monomial Functional Equation in Quasi Normed Spaces
Let X be a linear space and Y be a complete quasi p-norm space. We will show that for each function f : X → Y , which satisfies the inequality ||∆xf(y)− n!f(x)|| ≤ φ(x, y) for suitable control function φ, there is a unique monomial function M of degree n which is a good approximation for f in such a way that the continuity of t 7→ f(tx) and t 7→ φ(tx, ty) imply the continuity of t 7→ M(tx).
متن کاملSOME NEW RESULTS ON REMOTEST POINTS IN NORMED SPACES
In this paper, using the best proximity theorems for an extensionof Brosowski's theorem. We obtain other results on farthest points. Finally, wedene the concept of e- farthest points. We shall prove interesting relationshipbetween the -best approximation and the e-farthest points in normed linearspaces (X; ||.||). If z in W is a e-farthest point from an x in X, then z is also a-best approximati...
متن کاملHYERS-ULAM-RASSIAS STABILITY OF FUNCTIONAL EQUATIONS ON FUZZY NORMED LINER SPACES
In this paper, we use the denition of fuzzy normed spaces givenby Bag and Samanta and the behaviors of solutions of the additive functionalequation are described. The Hyers-Ulam stability problem of this equationis discussed and theorems concerning the Hyers-Ulam-Rassias stability of theequation are proved on fuzzy normed linear space.
متن کاملUlam Stability of a Bi-reciprocal Functional Equation in Quasi-β-normed Spaces
In this paper, we investigate the generalized Hyers-Ulam stability of a bi-reciiprocal functional equation in quasi-β-normed spaces. AMS Mathematics Subject Classification (2010): 39B82, 39B72
متن کاملHyers-Ulam-Rassias stability of a composite functional equation in various normed spaces
In this paper, we prove the generalized Hyers-Ulam(or Hyers-Ulam-Rassias ) stability of the following composite functional equation f(f(x)-f(y))=f(x+y)+f(x-y)-f(x)-f(y) in various normed spaces.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Demonstratio Mathematica
سال: 2021
ISSN: 2391-4661
DOI: 10.1515/dema-2021-0002